]> Oscilaciones de una boya en el agua.
Siguiente

Oscilaciones de una boya en el agua.

Tenemos un boya de forma cilíndrica flotando en el mar. Se deja caer un objeto sobre la boya (por ejemplo, una persona que salta encima). La boya empieza a oscilar. Determinar el periodo de la oscilación y la ecuación del M.A.S.

Supongamos una boya de forma cilíndrica o paralepipédica de densidad ρs menor que la del agua, de sección S y altura h.

Situación de equilibrio

En el equilibrio, la boya estará sumergida una altura h1 dada por el principio de Arquímedes:

peso=empuje

ρsghS=ρfgh1S , es decir,

ρsh=ρfh1

Supongamos que colocamos un bloque de masa m sobre la boya (por ejemplo, una persona que salta sobre la boya).

La nueva posición de equilibrio h2 se deduce del principio de Arquímedes

mg+ρsghS=ρfgh2S

Oscilaciones

Al colocar el bloque sobre la boya y soltarlo el sistema bloque-boya comienza a oscilar. Hallaremos el periodo de las oscilaciones

Calculamos la fuerza neta que actúa cuando la boya se ha desplazado x de la posición de equilibrio. Como vemos en la figura, si el desplazamiento x es hacia arriba, la resultante es hacia abajo. La fuerza es de signo contrario al desplazamiento.

F=empuje-pesofgS(h2-x)g-(mg+ρsghS)= -ρfSxg

La fuerza es proporcional al desplazamiento y de signo contrario a éste. El sistema describe un M.A.S. cuya frecuencia y periodo hallamos a partir de la segunda ley de Newton

(m+ρshS)a=-ρfSxg

o bien, expresado en forma de ecuación diferencial del MAS

d 2 x d t 2 + ρ f Sg m+ ρ s hS x=0

El periodo es, por tanto,

P=2π m+ ρ s hS ρ f Sg

La ecuación del MAS, solución de la ecuación diferencial es

x=A·sin(ω t+φ )
v=Aω
cos(ω t+φ )

Las condiciones iniciales determinan la amplitud A y la fase inicial φ .

El bloque se suelta cuando la boya se ha sumergido h1, al poner el bloque, en la nueva posición de equilibrio la boya se sumerge h2.

Luego, en el instante t=0, el desplazamiento de la boya respecto a su nueva posición de equilibrio es x=h2-h1 y su velocidad v=0.

h2-h1=A·sinφ
0=cosφ

La fase inicial es φ =π/2 y la amplitud A= h2-h1

La ecuación del M.A.S. es finalmente,  

x=(h2-h1)·sin(ω t+π /2)=(h2-h1)·cos(ω t)

Ejemplo:

Sea, ρs=600 kg/m3, S=0.5 m2, y m=100 kg. La altura de la boya es de 1.0 m, y está fijada en el programa interactivos

La boya se sumerge en el agua hasta la altura

600·1=1000·h1, es decir, h1=0.6 m ó 60 cm

Con el puntero del ratón cogemos el bloque de color negro situado en la parte superior izquierda del applet y lo situamos sobre la boya. El sistema boya-bloque empieza a oscilar.

La nueva posición de equilibrio h2 se calcula aplicando de nuevo el principio de Arquímedes

100+600·1·0.5=1000·0.5·h2, es decir, h2=0.8 m ó 80 cm

Podemos medir esta altura, parando el movimiento, cuando el sistema oscilante pasa por la posición de equilibrio (usar los botones Pausa y Paso)

La amplitud de la oscilación es 0.8-0.6 =0.2 m ó 20 cm tal como podemos ver en la representación gráfica posición-tiempo en la parte derecha del applet.

El periodo de las oscilaciones es

P=2π 100+600·1·0.5 1000·0.5·9.8 =1.8s

Medimos el periodo sobre el eje horizontal en la representación gráfica de x en función de t.

Cuando situamos el bloque sobre la boya, el centro de masas deja de estar en el centro de la boya. La nueva posición del c.m. relativo al centro de la boya se calcula mediante la siguiente fórmula

x cm = m0.5 m+( ρ s 1S )

En este ejemplo, xcm=0.125 m, o 12.5 cm por encima del centro de la boya.

El c.m. del sistema boya-bloque oscilará alrededor de la posición 0.8-0.5-0.125=0.175 m ó 17.5 cm por debajo de la superficie del agua.

Actividades

Se introduce

Se pulsa el botón titulado Inicio

Si los datos introducidos hacen que el sistema bloque-boya quede completamente sumergido durante la oscilación, se pide al usuario para que cambie los datos.

FluidoApplet1 aparecerá en un explorador compatible con JDK 1.1.

Pulse el botón Inicio y arrastre con el puntero del ratón el bloque de color negro y colóquelo sobre la boya.

Siguiente